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Abstract

This paper presents an analysis of heat and momentum transport to an array of particles from a ¯ow of a

collision-dominated weakly ionized gas consisting of electrons, ions, and neutrals. The particle longitudinal and
lateral spacing is varied independently to study the e�ect of particle spacing on the ¯ow and heat transport. The
conservation equations for mass, momentum, and energy for the neutrals and those for ions and electrons are

solved simultaneously with the Poisson's equation for the self-consistent electric ®eld. Solutions are obtained using a
®nite volume method and the formulation is based on a cylindrical-cell model. An orthogonal adaptive grid is
generated to body-®t the particle surfaces as well as the cylindrical outer boundary of the cell envelop. The ¯ow

®eld and the temperature distributions are obtained in the plasma and the overall Nusselt number and the drag
force acting on each particle are determined. Results indicate that the ¯ow and transport around a given particle is
signi®cantly in¯uenced by the presence of the neighboring particles. An increase in the lateral spacing between

particles results in a decrease in the Nusselt number as well as the drag coe�cient, whereas increasing longitudinal
particle spacing leads to an increase in both the Nusselt number and the drag coe�cient. The e�ect of side particles
becomes negligible for lateral spacings greater than about ®ve diameters. However, the in¯uence of upstream
particles remains signi®cant even at longitudinal particle spacing of ®ve diameters. Correlations that incorporate the

e�ects due to neighboring particles have been proposed for the drag coe�cient and the Nusselt number of an
interior particle in the array. # 1999 Elsevier Science Ltd. All rights reserved.

1. Introduction

Plasma ¯ow over a large number of particles is

encountered in induction plasma spraying process. In

this process, ceramic/metallic particles are introduced

in a ¯ow of thermal plasma. The heat transfer from

the plasma to the particles results in heating and melt-

ing of the particles. The molten particles then impinge

on a substrate to be coated. Subsequent spreading and

solidi®cation forms a thin layer on the substrate. As

particle velocity and temperature a�ects the quality of

the coating [1], it is important to predict and control

the particle momentum and heat transport. Pfender

and co-workers [2,3] and Boulos and co-workers [4,5]

provide extensive reviews of the studies on the momen-

tum and heat transfer to particles from plasma ¯ow.

Most of the work has been carried out for ¯ow over

an isolated particle. Young and Pfender [6] provide a

comparison of available Nusselt number correlations

for plasma ¯ow over an isolated sphere.

Simulations of particle/plasma ¯ow and heat trans-

fer in induction plasma torch [7,8] have typically

employed the particle-source-in-cell method [9]. In this

method, for each time step, the continuity, momentum

conservation, and the energy conservation equations
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for the continuous phase are solved ®rst. The drag

force and heat transfer to the particles are considered

as momentum/energy source terms in the correspond-

ing equations for the continuous phase. The source

terms for a computational cell are determined by sum-

ming the contribution of individual particles in that

cell by using drag force and Nusselt number corre-

lations for an isolated particle. The particle trajectories

are then determined based on the calculated ¯ow ®eld.

In plasma spraying process, due to the injection of a

large number of particles into the plasma ¯ow, the

¯ow ®eld and heat transfer around a given particle

gets signi®cantly a�ected by the proximity of neigh-

boring particles. Therefore, the appropriate Nusselt

number and drag coe�cients for closely spaced par-

ticles are likely to be considerably di�erent from that

for an isolated sphere, and are needed to incorporate

the e�ects due to inter-particle interactions in induc-

tion plasma spray simulations. Such e�ects due to

neighboring particles have not been addressed before

in plasma spraying. However, gas ¯ow over a multi-

particle con®gurations has received considerable atten-

tion in the context of fuel sprays in combustion sys-

tems. These studies are discussed in detail in a

monograph by Sadhal et al. [10] and a recent review

by Ayyaswamy [11]. Many of the studies of gas ¯ow

over multiple particles utilize a cylindrical cell model

developed by Tal et al. [12,13] to describe the hydro-

dynamics of particle assemblages. In this model, an

array of uniformly spaced spheres is considered as

shown in Fig. 1. Due to the symmetry and periodic

nature of the array, no heat and momentum transfer

is assumed to occur at lateral equidistant planes

between the columns of spheres. This reduces the

analysis to a multitude of spheres in tandem in a

square stream tube. The three-dimensional ¯ow situ-

ation in the square stream tube is then simpli®ed to an

axisymmetric analysis by replacing it with a cylindrical

duct. Although, in general, particle spray problem

may be non-axisymmetric, invoking axisymmetry can

indeed serve as a useful approximation for a reason-

ably symmetric distribution of neighbors around the

¯ow axis (for a detailed discussion, see Ayyaswamy

and co-workers [14,15]). Flow over an array of spheres

with equal stream-wise and lateral spacing at a

Reynolds number of 100 was considered by Tal et al.

[12]. They showed a decrease in drag force and

Nusselt number for the downstream spheres compared

to those for the leading sphere. An important contri-

bution was the identi®cation of periodicity that was

seen to evolve in the ¯ow and temperature ®eld after

the ®rst sphere. They used a non-uniform cylindrical

Nomenclature

2a lateral spacing between particles
CD drag coe�cient
d particle diameter

D di�usivity
e magnitude of charge on a single electron
hx, hZ, hf metric coe�cients in the curvilinear co-

ordinates (x, Z, f )
k thermal conductivity
kB Boltzmann constant

l longitudinal spacing between particles
N number density
Nu Nusselt number
p pressure

P rate of production of charged species
Pe Peclet number (RePr )
Pr Prandtl number

rp particle radius
r, z, f coordinates in the physical domain
R rate of recombination of charged species

Re Reynolds number based on particle di-
ameter

Sc Schmidt number

T temperature
u velocity

U1 free stream velocity
V electric potential

Greek symbols

b Di/De

e ratio of Debye length to diameter (lD/d )
G ¯ux of charged species

lm mean free path
lD Debye length
m mobility
n kinematic viscosity

r density
c stream function
o vorticity

x, Z, f coordinates in the computational domain

Subscripts/superscripts
av average value
e electron

i ion
n neutral
s isolated sphere
� dimensionless quantities
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grid that does not provide the same numerical accu-

racy of a ®ne uniform mesh around the particle sur-

face. The grid used in the numerical solution was later

improved by Chen and Tong [16] as an elliptical body-

®tted grid in their study of vaporizing liquid droplet

array. Due to the accuracy and ¯exibility of the grid

desired near the particle surfaces, Tsai and Sterling

[17] employed an embedded grid to study heat and

momentum transfer to a linear array of spheres. The

embedded grid was created by generating a spherical-

algebraic grid close to the sphere surface and a nu-

merical, curvilinear body-®tted grid in the remaining

¯ow region. This feature allows for accurate resolution

of steep velocity and temperature gradients in the

vicinity of the sphere surface. Their results indicate

that drag coe�cient and Nusselt number for the ®rst

sphere are higher than those for the downstream

spheres. However the values of CD and Nu for the sec-

ond and the third sphere are nearly equal. All of these

studies show that when the streamwise inter-particle

spacings are equal, the drag coe�cient and the Nusselt

number for the second and the follower spheres are

very close, and as such the results for the second

sphere can reasonably mimic the behavior of any in-
terior sphere of the array. Finite element methods have
also been used to study the ¯ow and heat transfer for

drops/spheres in tandem [18,19].
We note that gas ionization introduces further com-

plexities in ¯ow and transport. Chung et al. [20] pro-
vide a review of the studies on the interaction
between a spherical body and an ionized gas. Once

the particles are introduced in an ionized gas, owing
to the large di�erences in mobilities of ions and elec-
trons, initially more electrons impact on the surface

of the particles than ions. The particles become nega-
tively charged with respect to the main body of the

plasma such that the current of ions and electrons
towards a particle are equal. Under this condition,
the electric potential at the particle surface with

respect to the plasma is known as the ¯oating poten-
tial. A charge sheath, with high gradients of ion and
electron number densities and the electric potential, is

present close to particle surface whereas the main
body of the plasma is charge neutral [21,22]. The

transport of electrons and ions and their contri-
butions to the heat transport need to be taken into
account. For induction spraying applications, the

plasma temperatures are typically lower than 10,000 K
and the limit lm < lD < rp is satis®ed, where lm is

the mean free path, lD is the Debye length, and rp is
the particle radius. Under this limit, the heat transfer
from a stationary plasma to solid surfaces has been

modeled by Sripada et al. [23] and Jog et al. [24].
Recently we have analyzed plasma ¯ow over a spheri-
cal particle under this condition [25]. Our results indi-

cate that accounting for energy transport to the sphere
surface by conduction from charged species and their

recombination is necessary to accurately determine the
particle heat transport.
In this paper, we have analyzed the ¯ow of a weakly

ionized gas over an array of particles and have pro-
vided correlations for drag force and Nusselt number

that incorporate the e�ects of inter particle inter-
actions. Considering a symmetric distribution of par-
ticles in an array, a typical array cell is analyzed. The

e�ect of inter-particle interaction on the heat and
momentum transport has been studied by indepen-
dently varying the lateral and longitudinal spacing in

the particle array. The grid has been obtained by
incorporating recent developments in generation of or-

thogonal body-®tted grids [26]. An orthogonal grid
results in simpler forms of the transformed equations
by eliminating the cross derivative terms and it pro-

vides accurate representation of the boundary con-
ditions with comparably lower discretization errors.
Additionally, boundary point distribution control has

been incorporated to aid the future extension of the
work to non-spherical particle shapes.

Fig. 1. Schematic of the cylindrical-cell model.
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2. Problem formulation

Consider an array of spherical particles of radius r

with lateral spacing 2a and stream-wise separation l as

shown in Fig. 1. We employ the cylindrical cell model.
The ¯ow around a particle in a cell is taken to by axi-

symmetric. As the particle surfaces and the cylindrical
cell boundary are geometrically dissimilar, an orthog-
onal curvilinear grid is obtained that conforms to the

particle surfaces as well as cell boundary as described
below.

2.1. Grid generation

Fig. 2(a) shows a symmetrical half view of the physi-

cal domain. The corresponding computational domain
is shown in Fig. 2(b). The physical domain is made up
of four zones: three identical zones (1±3) and zone 4.
Zones 1±3 are constructed by algebraically generating

a spherical grid around each of the half circles rep-
resenting the spherical particles. These zones (1±3) are
incorporated to eliminate the intrinsic problem of non-

orthogonality at the front stagnation and rear ends
where the half circles meet the axis of symmetry. This
ensures the accurate evaluation of the local transport

parameters. These zones are coupled with the numeri-
cally generated orthogonal curvilinear grid in zone 4.
Following a procedure recently outlined by Eca [26],

the orthogonal curvilinear grid in zone 4 is obtained
from solution of the following coupled, non-linear par-
tial di�erential equations:
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The equation set (1) is discretized by applying the `con-

trol volume' approach and using second order accurate
central di�erencing for the ®rst derivatives of the grid
coordinates. Dirichlet boundary conditions are speci-
®ed at all boundaries. The distortion function, f, at the

four boundaries of the control volume is determined
from the de®nition Eq. (2). The distortion function
value is updated at the end of each inner cycle. Dual

criteria are used for the convergence by monitoring
the relative di�erence in distortion function,
z=max(( f nÿf n ÿ 1)/f n ), as well as maximum devi-

ation from orthogonality MDO=max(908ÿyi,j) where
yi,j is the angle between x and Z grid lines at a grid lo-
cation (i, j ) and is given by

Fig. 2. (a) Physical domain for the three-sphere cell con®gur-

ation and (b) computational domain.
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yi, j � cos ÿ1
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375:
Grid solution is considered to converge when z R 10ÿ4

and MDO < 0.10.

2.2. Governing equations and boundary conditions

We consider a ¯ow of a weakly ionized gas consist-
ing of electrons, ions, and neutrals. The far ®eld press-
ure is atmospheric and the ¯ow Reynolds number

based on the particle diameter is in the intermediate
regime (Re020±100). Good collision coupling exists
between heavy species (ions and neutrals) and their

temperatures are considered equal at any given lo-
cation [4]. Steady, laminar ¯ow has been assumed with
constant thermo-physical properties. Experimental stu-
dies have shown that the particle temperature remains

close to its melting temperature for most of the particle
residence time in plasma spraying process [1,27].
Therefore, surface temperatures of all particles in the

array are considered equal to the melting temperature
in this analysis. The background gas Argon is assumed
to be optically thin at the operating atmospheric press-

ure. Bourdin et al. [28], have shown that the heat
transport to a stationary particle by radiation is negli-
gible compared to that by conduction for far-®eld

plasma temperatures greater than 4000 K. For moving
particles, the convective heat transfer from plasma is
much greater than pure conduction. Therefore, radi-
ation is neglected compared to convection. The degree

of ionization is small such that the overall velocity
®eld can be determined by the solution of the conti-
nuity and the momentum conservation equation for

the neutral gas [20]. The conservation equations for
the charged particle density, electron energy with the
Poisson's equation for the self-consistent electric ®eld

describe the behavior of the electrons and ions. The
governing equations are rendered dimensionless using
the following non-dimensional parameters: r� � r=d,
u� � u=U1, p� � p=rU 2

1, H�=dH, V � � eV=�kBT1�,
N �e,i=Ne,i/No, T �=T/T1, and G�e,i=ed/
(me,iNokBT1)Ge,i. The Reynolds number Re=U1d/n,
the Prandtl number Pr=n/a, the Schmidt number

Sc=m/rD, b=Di/De and e=lD/d. The Debye length is
based on the undisturbed plasma properties
lD=[e0kBT1/(e

2No)]
1/2, where e0 is the permittivity of

free space. We assume that the Einstein relation m/
D=e/(kBT ) is satis®ed by charged species. The govern-
ing equations can be written in terms of the above

dimensionless parameters as:

r�u� � 0 �3�

Reu�r�u� � ÿRer�p� � r�2u� �4�

RePru�r�T �n � r�2T �n �5�
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r�2T �e � G�er�V � �8�

e2r�2V � N�e ÿN�i : �9�

The electron and ion ¯uxes are given by

G�e � ÿr�N�eT �e � �N�erV � �10�

G�i � ÿr�N�i T �i � ÿN�i rV �: �11�

The electron temperature is expected to be high in the
most of the domain and the thermal ionization and

three body recombination will be the predominant
mechanisms of the production and recombination of
charged particles. The net production by thermal ioniz-
ation and three body recombination is given by the

Saha equations as [29]

Pÿ R � gNe

"
2giNn

gn

�
2pmekTe

h2

�3=2

� exp

�
ÿ eVi

kTe

�
ÿNeNi

# �12�

where g=1.09 � 10ÿ20Tÿ9/2e m6/s [30].
The governing equations are subject the following

boundary conditions: At the inlet, the condition of uni-
form inlet velocity, pressure, number densities, and
free stream temperatures are imposed at the in¯ow
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boundary. Incoming plasma is considered ®eld free.
u �Z=1, u �x=0, p �=1, T �e,i,n=1, N �e,i=1, V �=0.

At the outlet, the out¯ow conditions are applied as
u �x=0, V �=0, @/@Z(u �Z, T

�
e,i,n, N

�
e,i)=0.

On the sphere surfaces no-slip and non-porous vel-

ocity boundary conditions are valid. The surface tem-
peratures and number densities are speci®ed. The
particle surfaces are considered as a perfect sink for

the electrons and ions, and as the surfaces are at the
¯oating potential, the condition of equality of ion and
electron ¯uxes is imposed. u �x=u �Z=0, T �e,i,n=T �s ,
N �e,i=N �s and meG

�
e=miG

�
i . Along the center line the

symmetry conditions are applied: u �x=0, @/@Z(u �Z, T
�
e,i,n,

N �e,i, V
�)=0 in Zones 1±3; and u �Z=0, @/@x(u �x, T

�
e,i,n,

N �e,i, V
�)=0 in Zone 4.

On the cylindrical cell envelop u �x=@/@x(u �Z, T �e,i,n,
N �e,i, V

�)=0.
The continuity, the momentum conservation, and

the energy conservation equations for the neutrals
(Eqs. (3)±(5)) are solved in the entire computational
domain using a stream function±vorticity formu-

lation. In a region of several Debye lengths adjacent
to the sphere surface, the charged particle densities
are expected to be small and the gradients of electric

potential and the number densities are expected to
be large. This is known as the electric sheath region.
The complete set of governing equations for the
charged species (Eqs. (6)±(9)) needs to be solved in

this region. Except for this thin electric sheath, in
the majority of the ¯ow ®eld the charged particle
densities are expected to be high and nearly equal,

and the gradients of temperature and the electric
®eld are expected to be small. This is referred to as
the quasi-neutral region. We can simplify a part of

the above set of equations in that region. As the
charged particle densities are expected to be large
and nearly equal, and the electric ®eld is small, the
left-hand side of Eq. (9) becomes very small com-

pared to the two terms on the right-hand side.
Therefore, Eq. (9) simpli®es to give the well-known
quasi-neutral solution as N �e=N �i 0N �. Using this

result and multiplying Eq. (6) by me and Eq. (7) by mi
and subtracting we get

r��N �r�V ��

� me

me � mi

r�2�N �T �e � ÿ
me

me � mi

r�2�N�T �i �: �13�

In the quasi-neutral region, the right-hand side of
Eqs. (6) and (7) show a balance between two very
large numbers compared to the left-hand side.

This is the balance of thermal ionization and recom-
bination, P 1 R. Therefore in the quasi-neutral
region

N �2 � 2giNn

gnN 2
o

�2pmekT1=h2�3=2T �e 3=2

exp�ÿV �i =T �e �: �14�

Eqs. (13) and (14) are solved simultaneously with

the electron energy equation (Eq. (8)) to get the
common density, electric potential, and electron tem-
perature variation in the quasi-neutral region. The

solutions in the entire computational domain for the
charged particle densities, temperatures, and the elec-
tric potential are obtained by matching the solutions
in the quasi-neutral region to those in the sheath

region by an iterative matching technique as
described later.

3. Computational methodology

The governing equations and the boundary con-
ditions are transformed in terms of the dimensionless
stream function c (scaled with U1d

2) and vorticity o
(scaled with U1/d ). The governing equations are ®rst

written in the cylindrical±polar coordinates and then
transformed to the orthogonal curvilinear coordinates,
(x, Z, f ). Note that due to the axially symmetric

nature of the formulation @/@f=0, uf=0, and
ox=oZ=0. First, the ¯ow ®eld and the temperature
distribution are obtained for the background gas. The

governing equations are discretized by the control
volume technique and the resulting algebraic equations
are solved iteratively. A power law scheme, based on

Patankar's generalized formulation [31], is employed to
handle the convective-di�usive terms. The temperature
®eld for neutrals is subsequently obtained by solving
the energy equation (Eq. (7)). An under-relaxation fac-

tor of 0.6 was adequate for both the vorticity and
energy equations. The convergence criterion (maximum
absolute error in the dependent variables between two

successive iterations) in all runs was set at 10ÿ5.
Next, the governing equations for the charged par-

ticle densities, electron temperature, and the electric

potential are solved simultaneously. First guess is
made for the charged particle densities and the electric
®eld. Using these guess values electron temperature
variation is obtained by solution of Eq. (8).

Corresponding values for the common number density
are calculated. Grid points are chosen where the num-
ber densities are O(eÿ2). The governing equations for

the sheath are then solved toward the surface. These
solutions in the sheath region provide the matching
boundary conditions required to solve the governing

equations in the quasi-neutral region. The electron
temperature is recalculated and this iterative procedure
is continued until convergence is obtained. Due to the
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coupled and non-linear nature of the equations, under
relaxation was used with relaxation coe�cients

between 0.8 and 1.0.

3.1. Physical quantities

From the velocity ®eld the viscous stresses acting on
the particles are obtained. The distribution of the non-

dimensional pressure is determined along the particle
surfaces by line integration of the momentum conser-
vation equation. (For details see [32]). The total drag

coe�cient is given by CD=CDF+CDP, where the fric-
tion drag coe�cient is evaluated as

CDF � 16

Re

�
surface

r�o �
@z

@Z
dZ �15�

and the pressure drag coe�cient is given by

CDP � ÿ
�

surface

8rp�
h�x
h�Z

@z

@x
dZ: �16�

Here hx, hZ, and hf are the metric coe�cients de®ned

as

hx �
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�2
#ÿ1=2
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@ r

@Z

�2
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�
@z

@Z

�2
#ÿ1=2

, hf � 1

r
:

�17�

Once the temperatures of the electrons, the ions and
the neutrals are determined, the energy transferred to
the particle surface can be calculated by accounting for

all the modes of heat transport to the surface. The net
heat transport is given by q=qr+qe+qi+qn. Here qr is
the energy deposited by recombination of the ions and

electrons at the surface equivalent to the ionization po-
tential. qr=eGeVi. The electrons and ions also deposit
their thermal energy by conduction.

qe � ÿkehx
@Te

@x
, qi � ÿkihx

@Ti

@x
:

The conduction of heat from the neutral gas is given
by

qn � ÿknhx
@Tn

@x
:

The local Nusselt number is

Nulocal � qd

�Ts ÿ T1�kn

and the overall Nusselt number is given by

Nu � 2

�
surface

Nulocalr
�

h�Z
dZ:

4. Results and discussion

The results were obtained for inter-particle longi-
tudinal and lateral spacing from 1.5 to 5 diameters.

The background gas was considered argon at atmos-
pheric pressure. The particle surface temperature was
taken as melting temperature for alumina, a commonly

used material for plasma spraying, T = 2323 K and
T1=8000 K. Electrical and thermo-physical properties
were obtained from Refs. [4] and [33]. Solutions were

obtained with 101 � 301 grid points in zone 4 and
61 � 61 grid points each in zones 1±3. To ascertain
grid independence, results for four test cases (l/d= 2,
4 and Re = 20,100, with a/d= 2.5) were obtained

with doubling the grid point in both directions. The
overall drag coe�cient and Nusselt number changed
by less than 1%. The numerical code was validated by

Table 1

Comparison of results for validation of the computational

model

Re = 100, Pr= 0.7 a/d= 2 Sphere 1 Sphere 2 Sphere 3

CD (present study) 0.994 0.421 0.71

Ramachandran et al. [19] 0.995 0.423 0.462

Nu (present study) 6.779 4.035 3.89

Ramachandran et al. [19] 6.852 4.027 3.92

Fig. 3. Stream function plots for l/d= 2 and 4 at Re= 50

and a/d = 4.
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comparison with available results by Ramachandran et

al. [19] for the three-sphere con®guration. The com-

parison is summarized in Table 1 and shows that the

results are in close agreement. As the results for

Nusselt number in Ref. [19] did not include gas ioniz-

ation e�ects, only the results for the neutral gas ¯ow

were compared. To validate the computational model

for charged species transport, solutions were obtained

with very large inter-particle spacing (8 diameters) at

Re= 50. The results for the leading sphere were com-

pared with the earlier results of Hader [34] and excel-

lent agreement was observed. The validated code was

then used to investigate the e�ect of inter-particle

spacing on ¯ow and transport.

Fig. 3 shows the streamlines for two di�erent longi-

tudinal spacings of 2 and 4 diameters. The lateral spa-

cing is kept constant at a/d= 4 with Reynolds number

being 50. A distinct evolution of periodicity in ¯ow

®eld is observed after the ®rst particle. At a small

longitudinal spacing of 2 diameters, the upstream

hemispheres of second and third particles are adversely

a�ected by the wake zones extending from the ®rst

and second particles, respectively. In contrast, for

higher longitudinal spacing of l/d = 4, less signi®cant

Fig. 4. Dimensionless neutral temperature contours for l/

d= 2 and 4. Re = 50, Pr= 0.7, a/d= 4, Ts=2323 K, and

T1=8000 K. Contours levels shown are, from outermost to

inside, 0.95, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, and 0.3.

Fig. 5. (a) Variation of the normalized drag coe�cient with

longitudinal spacing for interior particle at a/d= 2.5 and (b)

variation of the normalized drag coe�cient with lateral

spacing for interior particle at l/d= 4.
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wake interaction is observed between the particles. The

neutral temperature contours for the cases considered
in Fig. 3 are shown in Fig. 4. For both the cases, the
temperature gradients in the front part of the leading

sphere are the highest. At small longitudinal spacing,
due to the ¯ow stagnation in a region between ad-
jacent spheres, the temperature gradients in the front

part of the second and the third particles are much
smaller. At large longitudinal spacing, the wake of the

upstream particle does not reach the downstream par-
ticle. Therefore, with large longitudinal spacing, the
temperature gradients in the front part of the trailing

spheres are also high. However, even with l/d = 4, the
temperature contours around the leading particle are

not identical to those around the downstream par-
ticles.
It is well-established from earlier studies of ¯ow

over an array of spheres, that the overall drag coef-
®cient and Nusselt numbers for the second sphere are
very close to those for third and the subsequent

spheres, provided the longitudinal spacing between co-
linear spheres is equal. Therefore, the results for the

second particle can be considered to reasonably model
the behavior of an interior particle of the array. We
have presented the results for drag coe�cient and

Nusselt number such an interior particle. To elucidate
the e�ect of inter-particle interactions, the results are

normalized by those for an isolated sphere. The vari-
ation of normalized drag coe�cient as a function of
inter-particle spacing is shown in Fig. 5(a) and (b). In

Fig. 5(a), the lateral spacing is kept constant and the
longitudinal spacing is varied from l/d= 2±5. It is
noticed that for all Reynolds numbers, the total drag

coe�cient increases with increasing longitudinal
spacing. For a small longitudinal spacing (l/d = 2), the

wake zone of the previous particle extends till the
upstream hemisphere of the next particle. This creates
a low-pressure region in the front, resulting in a

reduced pressure drag. Additionally, the recirculating
region of the wake causes reversal in the direction of
local shear stresses at the upstream hemisphere. This

causes a reduction in the friction drag component as
well. Therefore, the total drag coe�cient decreases

with the decrease in longitudinal spacing. Fig. 4(b)
shows the variation of the normalized drag coe�cient
for an interior particle (second particle). The longitudi-

nal spacing is kept constant and the lateral spacing is
varied from a/d= 2±5. It can be observed that for all

Reynolds numbers, the increase in lateral spacing
causes a decrease in the normalized drag. This can be
attributed to the decrease in surface shear stresses due

to the weaker velocity ®eld associated with increased
spacing between the lateral neighbors. It causes a re-
duction in friction drag and, hence, the total-drag coef-

®cient. Additionally, from both the ®gures, it is
observed that for a ®xed inter-particle spacing, wake

Fig. 6. (a) Variation of the normalized Nusselt number with

longitudinal spacing for interior particle at Pr = 0.7 and a/

d = 2.5 and (b) variation of the normalized Nusselt number

with lateral spacing for interior particle at Pr = 0.7 and l/

d = 4.
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interaction increases with Reynolds number. The nu-
merical results obtained for the normalized drag coef-

®cient for an interior particle for the range of
Reynolds number from 20 to 100 with 2 R (a/d, l/
d ) R 5 are correlated as

Cd

Cds

� 1ÿ �0:86� 0:006Re0:5��l=d �ÿ1:3�0:173 ln Re

� 5:41Reÿ0:4 exp�ÿa=d �: �18�

The above correlation ®ts the numerical results within

a 3% error band. It can be observed that the e�ect of
inter-particle interaction decreases with increasing
inter-particle spacing, and the drag coe�cient value for

an isolated particle is recovered as the lateral and
longitudinal spacings become very large.
The results for the variation of normalized overall

Nusselt number of an interior sphere with lateral and
longitudinal spacing are shown in Fig. 6(a) and (b).
Fig. 6(a) shows an increase in overall Nusselt number
with increase in longitudinal spacing at all Reynolds

numbers. The slope of the curves at l/d = 5 suggests
that the interaction e�ect is signi®cant even beyond a
longitudinal spacing of 5 diameters. Only when the

particle spacing is so large that the cross-stream dif-
fusion can heat the cooler ¯uid leaving the upstream
particle to the temperature of the free stream, each

particle will behave as an isolated sphere.
Fig. 6(b) shows a decrease in the overall Nusselt

number of the interior sphere with increase in lateral
spacing at all Reynolds numbers. This can be attribu-

ted to the lowering of velocity ®eld in a region between
two lateral neighbors due to an increase in lateral
spacing and thus reducing the convective heat trans-

port. The slope of the curves at a/d = 5 suggests that
the lateral e�ects diminish beyond a lateral spacing of
a/d= 5. Additionally, both the ®gures show a decrease

in the normalized overall Nusselt number with increase
in Reynolds number for any geometric con®guration,
thus, indicating the increase in the interaction e�ect.

For instance, at l/d=a/d = 2.5, the overall Nusselt
number for the interior sphere is about 31±36% less
than the isolated sphere for Reynolds number range
20±100, respectively. Using a least square analysis the

e�ect of inter-particle spacing on heat transfer, for the
range of Reynolds number from 20 to 100, Prandtl
number of 0.7 and 2 R (l/d, a/d ) R 5, is correlated as

Nu

Nus

� 1ÿ
�
0:571ÿ 1:08

Re

�
�l=d ��ÿ0:544�0:0011Re�

� 0:25 exp�ÿa=d �: �19�

This correlation ®ts the numerical results within a 3%
error band.

5. Conclusions

A steady, laminar axisymmetric thermal plasma ¯ow
in an intermediate Reynolds number regime over an
array of spherical particles has been analyzed. The

e�ects of longitudinal and lateral spacing on the ¯ow
and heat transport have been investigated. The con-
tinuum conservation equations for the neutrals and

those for ions and electrons have been solved with the
Poisson's equation for the self-consistent electric ®eld.
A ®nite volume formulation and a numerically gener-

ated orthogonal curvilinear grid have been used.
Results show that increasing the longitudinal spacing
between particles results in an increase in the drag
coe�cient and Nusselt number. The in¯uence of the

upstream particles is signi®cant even beyond ®ve diam-
eters. Increase in the lateral spacing between the par-
ticles causes a decrease in the drag coe�cient and

Nusselt number. The lateral e�ects diminish exponen-
tially with increase in spacing. The results for drag and
Nuselt number for an interior particle in the array

have been found to be substantially di�erent from
those for an isolated particle at the same Reynolds
number. Correlations that incorporate the e�ects due

to neighboring particles have been proposed for the
drag coe�cient and the Nusselt number for an interior
particle in the array.
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